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ABSTRACT

In Natural Language Processing (NLP), using word embeddings as
input for training classifiers has become more common over the
past decade. Training on a lager corpus and more complex models
has become easier with the progress of machine learning tech-
niques. However, these robust techniques do have their limitations
while modeling for ambiguous lexical meaning. In order to capture
multiple meanings of words, several contextual word embeddings
methods have emerged and shown significant improvements on
a wide rage of downstream tasks such as question answering, ma-
chine translation, text classification and named entity recognition.
This study focuses on the comparison of classical models which use
static representations and contextual embeddings which implement
dynamic representations by evaluating their performance on multi-
labeled text classification of scientific articles. Ten experiments are
designed and implemented using different embedding methods to
train a classifier and the results demonstrate that contextual word
embeddings have outperformed the distributed word embeddings.
Furthermore, the model that was fine-tuned on a scientific cor-
pus has achieved better results than the one fine-tuned on general
domain collections or other models that use pretrained embeddings.
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1 INTRODUCTION

Word representation learning [1] has been one of the main research
areas in Semantics of the NLP domain and has proven to be effective
in downstream applications. The main idea here is that every word
can be transferred to a N-dimensional vector where similar words
will have closer proximity to each other. The word representations
are learned by exploiting a large amount of text corpora, most
popular classic word embedding methods include word2vec, GloVe
and fastText. Unlike count based method such as Bag-of-word and
Tf-idf vectors which only take the frequencies into account, these
methods use distributed vector representations that consider the
local word order in sequence and try to capture the semantics
meaning and similarity of words. These methods will be referred
to classical models in this thesis.

However, despite their robustness and ability to understand
semantic properties of words, distributed representations methods
are not able to disambiguate accurate word senses in different
content and fail to capture polysemy of words. A word can have
one or multiple meanings, and different words also often have very
similar or overlapping meanings. For instance, the word bank can
refer to two different meanings according to the text: a financial
institution or the land along the edge of a river. Hence, the word

sense of bank is ambiguous and it shares the same representation
regardless of the context it appears in.

In order to deal with the ambiguity of words, several methods
have been proposed to model the individual meaning of words and
an emerging branch of study has focused on directly integrating
the unsupervised embeddings into downstream applications. These
methods are known as contextualized word embedding. Most of the
prominent contextual representation models implement a bidirec-
tional language model (biLM) that concatenates the output vector
of the left-to-right output vector and right-to-left using a LSTM
model [2-5] or transformer model [6, 7].

The contextualized word embeddings have achieved state-of-the-
art results on many tasks from the major NLP benchmarks with the
integration of the downstream task. Nevertheless, these fine-tuned
(please refer to section 2.3) experiments are mostly trained on su-
pervised data, the fine-tuned method using a pretraining objective
hasn’t yet been thoroughly tested. Furthermore, the pretrained
models are mostly trained on a large corpus of general domain. We
investigate whether the model trained on the specific domain cor-
pus can improve the multi-label classification of scientific articles
provided by Elsevier. Our research questions are:

e RQ1 What is the impact on the performance metrics (please
refer to section 4.3) of contextual word embeddings compared
to classical word embedding?

e RQ2 How do embedding models trained on different domains
compared with each other in terms of performance metrics?

The method of this research consists of literature review, analysis
and experiments. Firstly, related literature of word embedding algo-
rithms and multi-label classification are discussed. This is followed
by a description of the selected models used for the experiments.
Then, the exploratory data analysis and data preprocessing steps
are covered. In order to truly understand the difference between
distributed word embedding and contextualized word embedding,
we conduct the experiments using both pretrained embedding and
fine-tuning on own data. For answering RQ1, BERT is fine-tuned
with an unsupervised method and compared with other classical
models by the classification task. Then, we fine-tuned BERT and
SciBERT (a variant of the BERT model pretrained on scientific arti-
cles) with a supervised approach. The evaluation results lead us to
the answer of RQ2.

2 RELATED WORK

This section discusses previous study done on multi-label classi-
fication learning (2.1), distributed word representations (2.2), and
contextualized word embeddings (2.3).



2.1 Multi-label classification

In general, the classification task in machine learning aims to ex-
plore knowledge that can be used to predict the unknown class of
an instance based on the features of the input instances. A classifica-
tion problem can be categorized into two groups: single-label clas-
sification and multi-label classification. Single classification tasks
concerned with learning from a set of examples that are associated
with a single label from a set of disjoint labels L [8]. In multi-label
classification, the examples can be associated with two or more
concept labels. In other words, each instance belongs to a subset
of classes from L. Over the past years, multi-label classification
tasks appears in a wide range of real-world situations and appli-
cations, and the existing multi-label classification methods can be
grouped into three categories: a) problem transformation methods,
b) algorithm adaptation methods and c¢) Ensemble methods [9, 10].
Problem transformation methods transform the multi-label classifi-
cation problem into either one or more single-label classification or
regression problems, and an algorithm adaptation approach aims to
extend specific learning algorithms in order to handle multi-label
data directly without requiring any preprocessing. The ensemble
based multi-label classifiers are developed on top of the problem
transformation and algorithm adaptation methods.

2.2 Distributed Word Representations

For capturing the semantic and syntactic regularities of words in an
NLP task, it is important that we know which words or expressions
can be used in a similar way based on a certain content. One of
the earliest work dates back to Rumelhart et al.,1986 [11], who use
the statistical language modeling to generate representations from
large unlabeled corpora by using the preceding words to predict the
next word in a sentence. The other approach to derive features is by
grouping together the words which appear in the same content. For
example, the clustering model by Brown et al. (1992) [12] automati-
cally categorizes words in a large corpus based on their neighboring
words. More recently, neural network models had been proposed
for modeling the probability distribution of the next word predic-
tion. These models were first introduced in Bengio et al.,2003 [13]
and Bengio et al., 2006 [14] who use the concatenation of previous
word vectors as an input representation of a feed-forward neural
model and aims to predict the next word in the sequence. Each
word trained in the model can be mapped into a low dimensional
vector where semantically similar words have similar vector repre-
sentations such as “increase” and “grow”. Mikolov et al., 2013 [15]
proposed two new model architectures: Continuous Bag-Of-Words
(CBOW) and Skip-gram, which was popularized as the word2vec
package that can be used for learning high-quality word vectors
from larger corpus. In the skip-gram model, surrounding words
are predicted based on the source word given, while in the CBOW
model, it predicts the target word according to its content. Quoted
directly from the w2v paper: ’Somewhat surprisingly, these ques-
tions can be answered by performing simple algebraic operations
with the vector representation of words’. A famous example using
arithmetic operations is as follow: vector(’King”) - vector("Man”) +
vector("Woman”) = vector("Queen”).

Most of the approaches generate the vector on the word level
without parameter sharing. However, the internal structure of

words is ignored and pose limitation of morphology for rich lan-
guages. A new branch emerged to leverage the word vector on
subwords units, which is a word can be split into arbitrary charac-
ter sequences and encode into n-gram vector [16—18].

2.3 Contextualized Word Embeddings

In the distributed word representation, each word type is projected
as a single point in the semantic space no matter which content it
appears in. However, in the real world, words tend to have different
meanings in different contexts. Capturing the multiple meanings of
a word and conflates all the meaning into one single vector has be-
come the biggest limitation in word embedding learning. In order to
adapt to dynamic polysemy language model, contextualized word
embedding has emerged to analyze the context of the target word
and generate its dynamic embedding. Context2vec [2] is one of the
earliest work that employ contextualized representations. Inspired
by the word2vec’s CBOW architecture, Context2vec proposes a
bi-directional LSTM language model to replace the averaged word
embeddings in a fixed window and contributes to crucial founda-
tion for a lot of subsequent research. In the case of a unidirectional
model, a word representation is generated from left to right. For
example, in the sentence “I have the bank account”, the model
would represent “bank” based on “I have the” but not “account”. As
for the bidirectional contextual model, the "bank" word would be
represented using both its previous and following context. More
computationally efficient models have been proposed for language
modeling later on including a feed forward self-attention method
for machine translation which is also known as Transformer [19]
and Embeddings from Language Models (ELMo) [4] where each
token is the concatenation of the left-to-right and right-to-left rep-
resentations.

The methods for training the word embedding can be catego-
rized into two groups: pretrained methods and fine-tune methods.
Pretrained embeddings can be obtained by training a large corpus
of unsupervised data which is usually time consuming and requires
lots of computation power. In order to integrate to several down-
stream task easily, a fine-tune method has emerged that utilizes
the pretrained embedding to initialize the model and fine-tunes
on domain specific representations or a supervised downstream
task. The advantage of this approach is that few parameters need
to be learned from scratch. Due to this progress, several models
including ELMo, OpenAI GPT [20], ULMFiT [5] and BERT [6] have
achieved state-of-the-art results on many sentence level tasks from
the major NLP benchmarks.

3 MODELS

This section describes the details of selected classical models (3.1)
and contextual embedding models (3.2).

3.1 Classical models

3.1.1  Tf-idf model. Ttf-idf (Term frequency-inverse document
frequency) is an popular method in information retrieval to deter-
mine how important a word is to a document. The term frequency
simply means how many times a word occurred in the document
and inverse document frequency evaluates how much information
the word carries, which tends to mitigate the importance of a term



if it tends to appear in many documents. A simple classifier can
be created by treating each text as a vector of word counts and
multiply the Tf-idf weights of each word. This method only takes
the word count into consideration instead of the word order and
the surrounding content. There are various methods to determine
the exact values of both statistics, in this case we use sklearn 1, an
open source machine learning package in python to calculate the

Tf-idf scores. The equation is defined as following:
. N
tf-idf; 4 = tf; 4 - log — + 1) (1)
s s df[

whereby N is the total number of documents in the corpus, t f — idf; 4
is the frequency of term t in document d, and df; denotes the num-
ber of documents where term t appears.

3.1.2 Word2vec model. Word2vec is a shallow, two-layer neural
net that processes linguistic contexts of words. It takes large text
corpus as input and reconstruct a vector space with each word
token to a N-dimensional vector in the semantic space. The vectors
are created using distributed numerical representations of word
features where similar words are located in close proximity each
other in the vector space. Word2vec consists of two architectures:
Continuous Bag-of-Words model (CBOW) and Skip-gram model.
The Continuous Bag-of-Words which has an architecture similar
to feed-forward neural network language model but with the non-
linear hidden layer removed and the projection layer shared for all
words. The model predicts the current word according to a window
of surrounding context and the order of context words doesn’t
influence prediction. However, unlike standard bag-of-words model,
continuous distributed representation is used of the context. The
model architecture is shown at Figure 1. For all word positions,
the weight between the input and the projection layer is shared
then the embedding is averaged before feeding into the objective

function.
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Figure 1: Model architecture of CBOW

Instead of predicting the target word based on its surrounding
context, skipgram model predicts the context given a word. In

Thttps://scikit-learn.org/stable/

addition, more distant words are given less weight by randomly
sampling them. The model architecture is shown at Figure 2.
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Figure 2: Model architecture of skipgram

3.1.3  fastText model. Inspired by the work of Mikolov et al.,2013
[15] and Levy et al2015 [21], fastText? is a library provided by
Facebook’s Al Research (FAIR) lab for learning of word representa-
tions [17] and text classification [22]. It supports continuous bag of
words (CBOW) and Skip-gram models to train a word embedding
model. Taking word order into consideration, fastText uses n-grams
as additional features to capture the information of the local word
order and also provides a solution for Out-Of-Vocabulary (OOV)
problems. Word2vec and Glove fail to give vector representation
if the word doesn’t exist in the dictionary, however a word can be
split into character n-grams in fastText, utilizing these can give
more meaningful vectors for morphologically similar words, e.g.,
compact v.s. compactification. These words would have overlapping
n-grams and would be embedded closer to each other. Additionally
the "ion" has linguistic meaning which can also be captured by
taking this approach. And for most sentences, it is possible to re-
construct the order of the words by just looking at a bag of n-grams.
A word is represented as the sum of the n-gram vectors, and the text
representation is obtained by averaging the word representations
in the document. The classifier architecture in fastText is similar
to the CBOW model, where the middle word is replaced by a label.
For classifying a text, fastText implements a simple linear model
with rank constraint, which makes the parameters sharing among
features and classes possible and increase the generalization power
of the context where some classes have very few examples. The loss
function for a set of N documents in fastText is defined as followed:

1 N
=3 D Un log(f(BAxn)) )
n=1

where f is the softmax function that computed the probability dis-
tribution over the predefined classes, y; is the label, x; is the nor-
malized bag of features of the nth document, A is the lookup of

https://fasttext.cc/



word to vector combined with averaging which is then passed to a
linear model B.

3.2 Contextual models

3.2.1 BERT model. One of the latest milestones for contextual
word embedding is the release of BERT, a deep bidirectional trans-
former model, in the late 2018. BERT builds upon several robust
pre-training contextual embeddings including Semi-supervised Se-
quence Learning [23], Generative Pre-Training [7], ELMo [4], and
ULMFit [5]. For standard language model, training a bidirectional
sequence seems impossible since it would allow each word indi-
rectly to "see itself" and the target word can be trivially predicted
based on the context. Unlike these previous models, which looked
at a text sequence either from left to right or combined left-to-right
and right-to-left, BERT proposed a new language modeling method
called Masked language modeling to achieve the deep bidirectional
training. When a sequence of text is fed into the model, BERT to-
kenizes the words using WordPiece. WordPiece implements the
greedy longest-match-first algorithm which is similar to byte pair
encoding [24] that builds up a vocabulary of its subword units.
An example for tokenizing the word "unaffable" using WordPiece
would generate the following output: "un", "##aff", "##able", which
also covers a wider spectrum of Out-Of-Vocabulary (OOV) words.

At pretrain time, after the sequence is tokenized into a list of
words and subwords, around 15% of input tokens in each sequence
are chosen at random, and 80% of those would be replaced with
a special token [MASK], while 10% would remain unchanged and
the rest 10% would be altered by a random token. Not masking
all the chosen words is to mitigate the downside of mismatch be-
tween pre-training and fine-tuning method since the [MASK] token
does not appear during fine-tuning. In order to improve the under-
standing of sentence relationships of the model, BERT pretrained
a binarized next sentence prediction task along with the masked
language model. While choosing sentences A and B for the pre-
diction task, each pretraining example are designed that 50% of
the time B is the actual next sentence that follows A. The masked
sequence would first be embedded into vectors which is the sum of
the token embeddings, the segmentation embeddings and the posi-
tion embeddings and then processed in the Transformer encoder.
A classification layer would be added on top of the encoder output,
and by multiplying the output vectors to the embedding matrix
would transform it into the vocabulary dimension. The probability
of each word and next sentence is then calculated by the softmax
function. The masked language model and next sentence prediction
are trained together, with the goal of minimizing the combined loss
function.

3.2.2  SciBERT. SciBERT [25] is a variant of BERT which focuses
training on scientific articles instead of general domain corpora
such as news articles and Wikipedia. The corpus of SciBERT consists
of 18% papers from the computer science domain and 82% from the
broad biomedical domain of 1.14M papers in total. The model is
trained on the full text, not just the title and abstract. Considering
the frequently occurring words might differ between scientific
articles and general domain texts, SciBERT builds a new WordPiece
vocabulary using SentencePiece library and sets the vocabulary

size to about 30K. In the paper, the author reports the overlap of
the token between BERT and SciBERT is 42%.

4 EXPERIMENT

This section describes the dataset used in the study (4.1), models
designed to answer the research questions (4.2), and the model
performance metrices used for multi-labeled evaluation (4.3).

4.1 Dataset

The dataset used has been provided by Elsevier’s own ScienceDirect
and Omniscience taxonomy that contains scientific content and
topics of science of the article they belong to. ScienceDirect is a
platform that enables users to search and access scientific articles of
different domains and Omniscience taxonomy provides hierarchical
relations of the science topics. For the classification task, the title
and abstract are used to represent an article and associates with
one or multiple topics it belongs to. In other words, an article can
have more than one science topic which makes it a multi-labeled
classification task.

In the dataset given, there are 1,031 classes in total and many
of the classes only have few examples. In order to mitigate class
imbalance effect, classes that have fewer than 500 examples are
not considered. In Figure 3, the bar chart on top shows the class
distribution of the original dataset which included classes that only
have few examples and hence not significant enough to represent
a class in the training dataset. The lower bar chart, the class distri-
bution, is shown after dropping certain observations which makes
the dataset more equally distributed.

There are two main characteristics for evaluating a multi-labeled
dataset: label cardinality and label density [26]. The Label cardinal-
ity is the mean of the number of labels of the classes, defined by
Eq. 3 and the label density is the mean of the number of labels of
the classes divided by the number of classes in the dataset, defined
by Eq. 4.

N
1
Cardinality = +- >l 3)
i=1
N
1 Y|
Density = — Y —= 4
ensity N ; ] 4)

where N is the number of instances, Y; is the set of labels of the ith
instance and L is the set of total distinct labels in the dataset.

In table 1, two label statistics are recorded at two stages: Before
and after the data is processed. Label cardinality slightly decreased
after the data is processed since some observations are dropped
due to the imbalanced nature of the dataset while the label den-
sity increased marginally due to the drastic decrease of number of
classes, which is from 1,031 to 338 classes. In general, the measures
can be used to evaluate differences between datasets, if the label
cardinality is identical between two collections but with distinct
label density can cause different behavior to the training classifier
[26]. In our case, the properties of the data does not seem to vary
too much before and after the processed stage.



Original dataset New dataset
Label cardinality 2.042 1.982
Label density 0.002 0.006

Table 1: Description of the label statistics before and after
data processing
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Figure 3: class distribution for scientific articles

4.1.1 Data pre-processing. Data processing is a critical step that
can reduce the complexity of the data and make it more understand-
able. The subsequent analysis could be better off through decreasing
the incomplete and inconsistent nature of real-world data. For the
scientific dataset, there is punctuation and other marks in the text
that need to be removed. Firstly, the title and abstract are concate-
nated to one piece of text and punctuation like single/double quotes,
spaces are normalized. Secondly, the copyright marks and the IEEE
citation references are eliminated. Instead of performing stop word
removal and stemming, we tried to keep the text as intact as possi-
ble. Removing stop words can be beneficial in some cases in NLP
applications, however some semantic information might be lost and
increase ambiguity which could weaken the performance of the
contextual embedding learning. As for stemming, BERT uses Word-
Piece tokenization which tokenizes a string by its suffix (please
refer to 3.2) which would be impossible if stemming is performed
beforehand. The data is split into training and testing set by each
class with 80% and 20% to make sure the two datasets have the same
class distribution. The size of training and testing data is 416,334
and 168,458 respectively.

4.2 Model implementation details

4.2.1 Word2vec training. Three experiments are designed to
evaluate the word2vector model. For the pretrained vector repre-
sentation, Word2vec provide a pretrained model that was trained
on Google News corpus with CBOW model, and the model contains
approximately 3 billion words and phrase. And we also trained the
CBOW and skipgram model on our own scientific data, with around
7 million words in the corpus. All models have 300-dimensional
vectors with the context window set to 10 and minimum word
occurrences of 5.

4.2.2  fastText training. The pretrained model [27] provided by
fastText was trained on 1 million word vectors on Wikipedia 2017,
UMBC webbase corpus and statmt.org news dataset (16B tokens)
with CBOW model. In practice, training CBOW model is much
faster than a skipgram model due to the nature of the architecture.
However, skipgram is better for infrequent words since it is de-
signed to predict the context of a target word so the common words
and rare words are treated the same 3. We selected a skipgram
model for generating the embeddings on our own data. The embed-
dings are trained with bigram, the concatenation of 2 consecutive
tokens or words, so that the model can trivially capture the local
order in the sentence. On the character level of n-grams, minimum
and maximum length of char n-gram is set to 3 and 6 respectively.
Minimal number of word occurrences is set to 5.

4.2.3 BERT training. BERT provides two options to fine tune
the classifier: BERT-Base and BERT-Large. Considering the compu-
tation time, we chose BERT-Based, which is a smaller model with 12
layer, 768 hidden size and 12 self-attention. Suggested by the paper,
"uncased" model of BERT-Based model is selected which means the
text has been lowercased before WordPiece tokenization and accent
markers have been stripped out since the case information is not
important for our task. The pretrained BERT-based uncased model
provided by BERT was trained on BooksCorpus with about 800
million words and English Wikipedia with 2,500 million words. We
fine-tuned BERT with both the unsupervised and the supervised
method. All the parameters are set to default which are suggested
by BERT in the fine-tuning stage, only the batch size has changed
from 32 to 8 to deal with the out of memory error during training.
We obtained the embedding by concatenating the last four hidden
layers of the transformer since the method shows the highest F1
score compared to other approaches in the BERT paper. The BERT
model is implemented by using the pytorch library 4 and run on a
GPU with 16GB of RAM.

4.2.4  SciBERT training. SciBERT model is fine-tuned in a su-
pervised approach in order to compare with the supervised BERT
model. The purpose of this experiments is to figure out whether
training on a different domain will affect the performance result so
the parameters are set to the same as in fine-tuning BERT in order
to have a fair comparison.

4.2.5 Classifier. In this case, we chose multinomial logistic re-

gression (softmax regression) which is a generalization of logistic

Shttps://code.google.com/archive/p/word2vec/
*https://github.com/huggingface/pytorch-pretrained-BERT



regression for multi-class classification. Only the fastText experi-
ments were trained on its own classifier, all the other experiments
were trained on this classifier. Standard logistic regression can only
do binary classification which assumes the labels are either 0 or 1.
However, multinomial logistic regression allows one to handle mul-
tiple classes. The model predicts the probabilities of the different
possible outcomes with a set of attributes and these class probabili-
ties are summed up to one. With 338 labels in our dataset, training
could take up a lot of time. Hence, the max iteration of classifier is
set to 30 steps. That is, the model will converge at 30 epoch even if
it doesn’t reach its optimal stage. Due to time constraints and the
goal of this studying isn’t building a strong classifier, parameter
tuning isn’t applied.

4.3 Model Performance Metrics

Traditional single-label classification task is concerned with learn-
ing from examples that are related to a single label, while multi-label
learning is concerned with examples that can be associated with
multiple labels [28]. Therefore, the prediction in multi-label task
can be fully correct, partially correct or fully incorrect and thus
requires different metrics than those used in traditional single-label
classification [10]. Evaluation measures for multi-label learning
can be categorized into two groups: example based and label based.
Example based tend to calculate the average difference between the
predicted labels and the true labels for each test example, and then
average over all examples in the test set in order to capture par-
tially correct information. On the other hand, label based measures
evaluate each label first and then averaged over all labels.

4.3.1 Example-based method. [29] In the definitions below, N
is the number of examples in the dataset and Q is the number of
classes. y; denotes the set of true labels and x; is the label predicted
by the classifier.

xi N yl
Accuracy = | ——— (5)
v= ; xi U y,
Accuracy computes the percentage of correctly classified labels

among all predicted and true labels.

1 xin yi
Precision = — LA L] 6
N;|m| ©)

Precision calculates the percentage of correctly classified labels
among all predicted labels.

1 S xin yi
Recall = — | (7)
N Zl‘ Yi
Recall shows the percentage of correctly classified labels among all
true labels.
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F1-measure is the harmonic mean of precision and recall, it will
penalizes classifiers with imbalanced precision and recall scores.

4.3.2 Label-based method. [29] Label-based metrics consider
each label as a binary classifier and can be further divided into
Macro-averaged and Micro-averaged measure. Here we chose to
use Macro-averaged method to evaluate the model.

Macro — precision = —_— 9
P Qzlth*'szl ©)
where tp; and fp; are the number of true positives and false posi-
tives for the label.

Macro — recall =

Z%ﬁﬁl (10)

tp; and fp; are defined above and fn; denotes the number of the
false negatives for the label.

1 2-tp;
Macro — F1 — measure = —
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In macro-averaged F1 measure average of the precision and recall
for each set is calculated.

5 RESULTS

This section covers the results of the experiments mentioned in the
model implementation details section and answers to the research
questions mentioned in the introduction section.

5.1 Answer to RQ1

We conducted several experiments to compare classical embed-
dings and contextual embeddings. The classification performance
for the different embeddings is shown in Table 2. In the first ex-
periment, we built the Tf-idf model to compare the performance
between the count-based method and the word embedding method.
The result shows that tf-idf performs worse than most of the em-
bedding methods. Tf-idf is an improved version of bag-of-words
model and it does not capture the semantic meaning and the po-
sition of words. Word2vec, fastText and BERT provide pretrained
embeddings that were trained on a general domain. The results
indicate that Word2vec has the best result compared to fastText
and BERT among pretrained embeddings. In this case, using the
fastText classifier with a pretrained embedding performed worse
than the tf-idf method. We also trained word2vec, fastText and
BERT using our own dataset. The word2vec models were trained
using two architectures: skipgram and CBOW. The fastText model
was trained using skipgram and we fine-tuned the BERT model in
an unsupervised way to learn the new embeddings. The word2vec
skipgram model obtained the best result in this classification task
and fastText with the pretrained embedding performed the worse.
In the pretrained embeddings experiments, not only the model ar-
chitectures are distinct, but also the dataset used is different. On the
other hand, training BERT from scratch is not realistic due to the
limitation of time and computation power, hence BERT can only
be fine-tuned on the general domain dataset. We suspect that these
are the most contributing factors to explain that contextual embed-
dings do not outperform the classical embedding while training



Model Accuracy  Precision@1Recall@1 F1- Macro- Macro- Macro-F1-
measure precision  recall measure
Tf-idf 0.074 0.328 0.088 0.139 0.259 0.104 0.109
Word2vec pretrained embedding  0.115 0.489 0.131 0.207 0.401 0.168 0.180
fastText pretrained embedding ~ 0.052 0.235 0.063 0.099 0.13 0.079 0.081
BERT pretrained embedding 0.081 0.353 0.093 0.147 0.272 0.118 0.204
Word2vec CBOW embedding 0.126 0.531 0.142 0.224 0.437 0.196 0.213
Word2vec skipgram embedding ~ 0.133 0.554 0.148 0.234 0.455 0.201 0.217
fastText skipgram embedding 0.114 0.483 0.130 0.204 0.264 0.152 0.152
Unsupervised fine-tuning BERT ~ 0.088 0.384 0.103 0.162 0.297 0.135 0.149
Supervised fine-tuning BERT 0.145 0.599 0.160 0.253 0.355 0.218 0.230
Supervised fine-tuning SciBERT ~ 0.159 0.649 0.174 0.275 0.473 0.249 0.271

Table 2: Measurements of prediction quality on test data using different embedding

without a downstream task purpose. However further investigation
is needed to verify these statements.

5.2 Answer to RQ2

The results in table 2 show that embeddings that are trained on the
scientific dataset outperformed those using the pretrained embed-
ding. The word2vec skipgram model, the fastText skipgram model
and the unsupervised fine-tuned BERT model show an increase of
the accuracy by 13.5%, 54% and 8% respectively. We also fine-tuned
BERT which was trained on a large corpus of general domain data
and SciBERT which was trained on scientific domain data to com-
pare their performances. The accuracy and F1 score both increase
by 8% for the supervised SciBERT model and it obtained the best
result in our experiments. We can conclude that training the corpus
on the scientific domain improves the performance of the classi-
fication task. Furthermore, associating the training progress with
labels improves the performance significantly.

6 CONCLUSION

In this study, we generated a training dataset consisting of the title
and abstract of scientific articles that can be used as input to a
logistic regression classifier. We conducted experiments with dif-
ferent embeddings including tf-idf, word2vec, fastText and BERT.
The performances of the models are then evaluated using various
evaluation metrics. The results show that the classical embeddings
outperformed unsupervised contextual embeddings in the classi-
fication task, and training a model on a corpus of the scientific
domain improves the accuracy score. We have also shown that
the classification task can be improved significantly by training
supervised contextual embeddings. However, no conclusive result
is obtained to explain why contextual embeddings performed worse
in the unsupervised way. Further research would need to be done
to reach a more comprehensive answer on the influence of the
contextual word embeddings approach.
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